

DITERPENOIDS OF CONYZA COULTERI

SHIVANAND D. JOLAD,* BARBARA N. TIMMERMANN, JOSEPH J. HOFFMANN, ROBERT B. BATES† and FERNANDO A. CAMOU†

University of Arizona, Office of Arid Lands Studies, Bioresources Research Facility, 250 E. Valencia Road, Tucson, AZ 85706, U.S.A., *University of Arizona, College of Pharmacy, Tucson, AZ 85721, U.S.A., †University of Arizona, Department of Chemistry, Tucson, AZ 85721, U.S.A.

(Received 24 June 1987)

Key Word Index—*Conyzia Coulteri*; Asteraceae, Astereae, Solidagininae, diterpenoids, centipedic acid, hardwickic acid, 2β-hydroxyhardwickic acid, bacchotricuneatin A

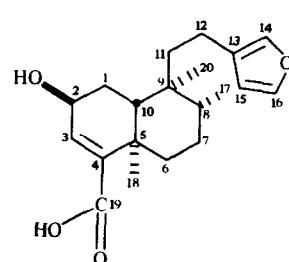
Abstract—Four furanoditerpenoids, including three furanoclerodanes, have been identified in the extract of the aerial parts of *Conyzia Coulteri*. One of the terpenoids, 2β-hydroxyhardwickic acid, was found as a natural product for the first time.

INTRODUCTION

The genus *Conyzia* is known to produce acetylenes, di- and triterpenoids, flavones and coumarins [1-7]. This note reports our examination of the chemical constituents of *Conyzia Coulteri* Gray, an annual herb of the southwestern United States and Mexico that is known to be toxic to livestock [8].

From the methylene chloride extract of *C. Coulteri*, four furanoditerpenoids (**1-4**), including three furanoclerodanes (**2-4**) were isolated and characterized mainly by spectral (NMR and MS) methods and comparisons with literature data. The furanoditerpenoid (**1**) was identified [IR $\lambda_{\text{max}}^{\text{CHCl}_3}$: 3000-2500 and 1690 (COOH), 1500 and 870 (furan), 3040, 1645, 1635 (C=C) cm⁻¹; EIMS m/z: 316 (M⁺), 81 (furan-CH₂), 69 (>=CH-CH₂, base); ¹H NMR as reported] as centipedic acid, a constituent of *Centipeda orbicularis* (Asteraceae) [9]. The three furanoclerodanes include, hardwickic acid (**2**), bacchotricuneatin A (**3**) and 2β-hydroxyhardwickic acid (**4**). Compound **2**, previously reported from plants of different genera [7,10], was identified by direct comparison with an authentic sample. Compound **3**, previously isolated from *Baccharis tricuneata* var. *tricuneata* [11,12] and *B. articulata* [13], was characterized on the basis of

its spectral data [IR $\lambda_{\text{max}}^{\text{CHCl}_3}$: 1770 and 1750 (-C=O-), 3015 and 1660 (C=C), 1500 and 868 (furan) 1380 (Me) cm⁻¹; EIMS m/z: 342 (M⁺), 312 (base), 95 (furan-CH₂-CH₂), 94 (furan-CH=CH₂); HRMS m/z: 342 1540 (+5.3 mmu), C₂₀H₂₂O₅ and ¹H NMR as previously reported].


2β-Hydroxyhardwickic acid (**4**) was previously prepared (i) by the saponification of 2β-succinylxyloxyhardwickic acid present in the acidic fraction of *Dodonaea boronifolia* and characterized as its methyl ester derivative and (ii) by synthesis, along with its C-2 epimer, from *ent*-15,16-epoxycleroda-3,13(16),14-triene-2 α ,19-diol isolated from the neutral fraction of the same species [14]. Recently, Pandey, *et al.* [7] reported the C-2 epimer of **4**, characterized as its methyl ester derivative, from *Conyzia japonica* and synthesized both epimers from methyl hard-

wickiate. Our isolation of **4** is the first report of the free acid from a natural source. Its spectral data [IR $\lambda_{\text{max}}^{\text{CHCl}_3}$: 3600 and 1020 (OH), 3000-2500 and 1700 (COOH), 1500 and 870 (furan), 3010, 1635 and 840 (C=C) cm⁻¹, EIMS m/z: 332 (M⁺), 314 (M-H₂O), 95 (furan-CH₂-CH₂), 81 (furan-CH₂), ¹H NMR (δ , CDCl₃) 0.75 (H-20), 0.84 d (J = 5.8 Hz, H-17), 1.20 (H-19), 4.34 br s (H-2), 6.26 br s (H-14), 6.63 d (J = 4.1 Hz, H-3), 7.20 br s (H-16), 7.31 br s (H-15)] parameters are in accord with those given for its methyl ester derivative [14]. In particular, the signal for H-2 as a doublet (J = 4.1 Hz) rather than as a doublet of doublets (J = 2.5, 1.5 Hz) defines the configuration at C-2 [7]. The ¹³C NMR parameters for **4** (see Experimental), hitherto unreported, support the structure.

EXPERIMENTAL

Plant material. The collection of *C. Coulteri* was made on 30 August 1985 in the Santa Rita and Huachuca mountains in Southern Arizona. A voucher specimen (SPM 3039) was deposited in the Herbarium of the University of Arizona. All plant material was air-dried, ground to 3 mm particle size and stored at 5° prior to extraction.

Extraction and isolation The solvent-free CH₂Cl₂ extract (48 g) of the ground plant (Soxhlet) was stirred with Et₂O (800 ml,

2 hr), left in the refrigerator overnight, filtered and solvent removed. A small portion of the Et_2O -soluble fraction when submitted to TLC [*n*-hexane- Et_2O (2:1), 2 developments] gave **1** which was purified by further TLC (same solvent system). Another portion of the Et_2O -soluble fraction when submitted to Silica gel CC (120 g packed in *n*-hexane) gave nine fractions 1 [*n*-hexane- Et_2O (2:1)], 2-4 [*n*-hexane- Et_2O (1:1)], 5-8 (Et_2O) and 9 [CH_2Cl_2 -MeOH (1:1)], from which **2-4** were isolated as follows.

Fraction 1, which contained **2**, was initially submitted to Silica gel CC and the fraction eluted with *n*-hexane- Et_2O (4:1) gave **2** on further TLC [*n*-hexane- Et_2O -AcOH (25:10:1)].

Fractions 6-7 gave **3** when submitted to TLC [*n*-hexane- CHCl_3 -AcOH (10:10:3), 1 development].

TLC of Fr. 2 [*n*-hexane- Et_2O -AcOH (15:9:1), 2 developments] gave **4**, ^{13}C NMR (δ , CDCl_3) (for C-1 to C-20, in order) 27.1, 64.1, 135.8, 144.4, 37.9 or 38.3, 35.2, 27.1, 36.0, 37.9 or 38.3, 41.1, 38.6, 17.4, 125.6, 142.4, 111.0, 138.3, 172.2, 18.6 or 18.8, 15.7 and 18.6 or 18.8, in accord with the structure.

The spectral properties of **1-4** are described in the text.

Acknowledgments.—We thank Dr S. P. McLaughlin for plant collection and identification and Mr Peter Baker for mass spectral data. This work was supported by the National Science Foundation (Grant PCM-8304771).

REFERENCES

- Bohlmann, F and Jakupovic, J (1979) *Phytochemistry* **18**, 1367
- Dominguez, X A, Quintero, G and Butruille D (1972) *Phytochemistry* **11**, 1855
- Hammouda, F, Rizk, A and El Kady, M S (1979) *Pharmazie* **34**, 112
- Tandon, S and Rastogi, R P (1979) *Phytochemistry* **18**, 494
- Bohlmann, F and Grenz, M (1972) *Chem. Ber.* **105**, 3123
- Bohlmann, F and Wegner P (1982) *Phytochemistry* **21**, 1693
- Pandey, U C, Singhal, A K, Barua, N C, Sharma, R P, Baruah, J N, Watanabe, K, Kulanthavel P and Herz W (1984) *Phytochemistry* **23**, 391
- Correll, D and Johnston, M (1970) *Manual of the Vascular Plants of Texas* Texas Research Foundation, Renner Texas
- Bohlmann, F and Mahanta, P (1979) *Phytochemistry* **18**, 1067
- Misra, R, Pandey, R and Dev, S (1964) *Tetrahedron Letters* **49**, 3751
- Wasner, H, Seitz, R, Chari, V, Lotter, H and Herz, W (1977) *Tetrahedron Letters* **35**, 3039
- Wasner, H, Seitz, R, Lotter, H and Herz, W (1978) *J. Org. Chem.* **43**, 3339
- Gianello, I and Giordano, O (1982) *Rev. Latinoam. Quim.* **13**, 76
- Jeffries, P, Knox, I and Scaife, R (1973) *Aust. J. Chem.* **26**, 2199

A NEW CLERODANE DERIVATIVE FROM *TINOSPORA CORDIFOLIA*

R K BHATT, JAMPANI B HANUMAN and B. K SABATA*

Department of Chemistry, Indian Institute of Technology, Bombay 400076, India

(Revised received 21 August 1987)

Key Word Index—*Tinospora cordifolia*, Menispermaceae, new clerodane diterpenoid

Abstract—A new clerodane diterpenoid has been isolated from the stems of *Tinospora cordifolia*. Its structure was established by spectroscopic means and by comparison with closely related clerodane derivatives.

INTRODUCTION

Chemical investigation of *Tinospora cordifolia* has led to the isolation of a phenolic lignan and one diterpenic furano lactone which were reported earlier [1, 2]. In the

present paper the isolation and structure of a new clerodane derivative, isolated from the same plant is reported. The structure (**1**) was deduced mainly with the help of ^1H NMR, spin-decoupling and ^{13}C NMR studies along with the comparison of the spectral data of closely related clerodane diterpenoids such as 6-hydroxy arcangelisin (**2**) [3], fibraurin (**3a**) [4], 6-hydroxy fibraurin (**3b**) [3, 4], palmarin (**4**) [5-7] and 8-hydroxy columbin (**5**) [8].

* Author to whom correspondence should be addressed